Search for directed genic interactions:  

FKBP8 MTOR (1 - 2 of 2)
PMID: 18676370
Re-evaluating the roles of proposed modulators of mammalian target of rapamycin complex 1 (mTORC1) signaling.
... nor FKBP38 regulates mTORC1 signaling ...   (details)

FKBP8 MTOR

Type:  positive regulation
Is this interaction correct?
Yes
No

Comments

Theme:  mTORC1   (MLST8   RPTOR   MTOR )

PMID: 18676370

Re-evaluating the roles of proposed modulators of mammalian target of rapamycin complex 1 (mTORC1) signaling.
Source

The Journal of biological chemistry (11/7/2008)

Abstract

Re-evaluating the roles of proposed modulators of mammalian target of rapamycin complex 1 (mTORC1) signaling. Signaling through mammalian target of rapamycin complex 1 (mTORC1) is stimulated by amino acids and insulin. Insulin inactivates TSC1/2, the GTPase-activator complex for Rheb, and Rheb.GTP activates mTORC1. It is not clear how amino acids regulate mTORC1. FKBP38 (immunophilin FK506-binding protein, 38 kDa), was recently reported to exert a negative effect on mTORC1 function that is relieved by its binding to Rheb.GTP. We confirm that Rheb binds wild type FKBP38, but inactive Rheb mutants showed contrasting abilities to bind FKBP38. We were unable to observe any regulation of FKBP38/mTOR binding by amino acids or insulin. Furthermore, FKBP38 did not inhibit mTORC1 signaling. The translationally controlled tumor protein (TCTP) in Drosophila was recently reported to act as the guanine nucleotide-exchange factor for Rheb. We have studied the role of TCTP in mammalian TORC1 signaling and its control by amino acids. Reducing TCTP levels did not reproducibly affect mTORC1 signaling in amino acid-replete/insulin-stimulated cells. Moreover, overexpressing TCTP did not rescue mTORC1 signaling in amino acid-starved cells. In addition, we were unable to see any stable interaction between TCTP and Rheb or mTORC1. Accumulation of uncharged tRNA has been previously proposed to be involved in the inhibition of mTORC1 signaling during amino acid starvation. To test this hypothesis, we used a Chinese hamster ovary cell line containing a temperature-sensitive mutation in leucyl-tRNA synthetase. Leucine deprivation markedly inhibited mTORC1 signaling in these cells, but shifting the cells to the nonpermissive temperature for the synthetase did not. These data indicate that uncharged tRNA (Leu) does not switch off mTORC1 signaling and suggest that mTORC1 is controlled by a distinct pathway that senses the availability of amino acids. Our data also indicate that, in the mammalian cell lines tested here, neither TCTP nor FKBP38 regulates mTORC1 signaling.

PMID: 20439463
Hepatitis C virus NS5A activates the mammalian target of rapamycin (mTOR) pathway, contributing to cell survival by disrupting the interaction between FK506-binding protein 38 (FKBP38) and mTOR.
... this mTOR activation was dependent on NS5A-FKBP38 interaction ...   (details)

FKBP8 MTOR

Type:  positive regulation
Is this interaction correct?
Yes
No

Comments

PMID: 20439463

Hepatitis C virus NS5A activates the mammalian target of rapamycin (mTOR) pathway, contributing to cell survival by disrupting the interaction between FK506-binding protein 38 (FKBP38) and mTOR.
Source

The Journal of biological chemistry (7/2/2010)

Abstract

Hepatitis C virus NS5A activates the mammalian target of rapamycin (mTOR) pathway, contributing to cell survival by disrupting the interaction between FK506-binding protein 38 (FKBP38) and mTOR. Hepatitis C virus (HCV) often establishes a persistent infection that most likely involves a complex host-virus interplay. We previously reported that the HCV nonstructural protein 5A (NS5A) bound to cellular protein FKBP38 and resulted in apoptosis suppression in human hepatoma cell line Huh7. In the present research we further found that NS5A increased phosphorylation levels of two mTOR-targeted substrates, S6K1 and 4EBP1, in Huh7 in the absence of serum. mTOR inhibitor rapamycin or NS5A knockdown blocked S6K1 and 4EBP1 phosphorylation increase in NS5A-Huh7 and HCV replicon cells, suggesting that NS5A specifically regulated mTOR activation. Overexpression of NS5A and FKBP38 mutants or FKBP38 knockdown revealed this mTOR activation was dependent on NS5A-FKBP38 interaction. Phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 treatment in NS5A-Huh7 showed that the mTOR activation was independent of PI3K. Moreover, NS5A suppressed caspase 3 and poly (ADP-ribose) polymerase activation, which was abolished by NS5A knockdown or rapamycin, indicating NS5A inhibited apoptosis specifically through the mTOR pathway. Further analyses suggested that apoptotic inhibition exerted by NS5A via mTOR also required NS5A-FKBP38 interaction. Glutathione S-transferase pulldown and co-immunoprecipitation showed that NS5A disrupted the mTOR-FKBP38 association. Additionally, NS5A or FKBP38 mutants recovered the mTOR-FKBP38 interaction; this indicated that the impairment of mTOR-FKBP38 association was dependent on NS5A-FKBP38 binding. Collectively, our data demonstrate that HCV NS5A activates the mTOR pathway to inhibit apoptosis through impairing the interaction between mTOR and FKBP38, which may represent a pivotal mechanism for HCV persistence and pathogenesis.