Search for directed genic interactions:  

AKT3 INS (1 - 2 of 2)
PMID: 10187855
Oxidative stress disrupts insulin-induced cellular redistribution of insulin receptor substrate-1 and phosphatidylinositol 3-kinase in 3T3-L1 adipocytes. A putative cellular mechanism for impaired protein kinase B activation and GLUT4 translocation.
... in insulin stimulated ... impaired activation of ... and PKBgamma.   (details)

AKT3 INS

Type:  positive regulation
Is this interaction correct?
Yes
No

Comments

PMID: 10187855

Oxidative stress disrupts insulin-induced cellular redistribution of insulin receptor substrate-1 and phosphatidylinositol 3-kinase in 3T3-L1 adipocytes. A putative cellular mechanism for impaired protein kinase B activation and GLUT4 translocation.
Source

The Journal of biological chemistry (4/9/1999)

Abstract

Oxidative stress disrupts insulin-induced cellular redistribution of insulin receptor substrate-1 and phosphatidylinositol 3-kinase in 3T3-L1 adipocytes. A putative cellular mechanism for impaired protein kinase B activation and GLUT4 translocation. In a recent study we have demonstrated that 3T3-L1 adipocytes exposed to low micromolar H2O2 concentrations display impaired insulin stimulated GLUT4 translocation from internal membrane pools to the plasma membrane (Rudich, A., Tirosh, A., Potashnik, R., Hemi, R., Kannety, H., and Bashan, N. (1998) Diabetes 47, 1562-1569). In this study we further characterize the cellular mechanisms responsible for this observation. Two-hour exposure to approximately 25 microM H2O2 (generated by adding glucose oxidase to the medium) resulted in disruption of the normal insulin stimulated insulin receptor substrate (IRS) -1 and phosphatidylinositol (PI) 3-kinase cellular redistribution between the cytosol and an internal membrane pool (low density microsomal fraction (LDM)). This was associated with reduced insulin-stimulated IRS-1 and p85-associated PI 3-kinase activities in the LDM (84 and 96% inhibition, respectively). The effect of this finding on the downstream insulin signal was demonstrated by a 90% reduction in insulin stimulated protein kinase B (PKB) serine 473 phosphorylation and impaired activation of PKBalpha and PKBgamma. Both control and oxidized cells exposed to heat shock displayed a wortmannin insensitive PKB serine phosphorylation and activity. These data suggest that activation of PKB and GLUT4 translocation are insulin signaling events dependent upon a normal insulin induced cellular compartmentalization of PI 3-kinase and IRS-1, which is oxidative stress-sensitive. These findings represent a novel cellular mechanism for the induction of insulin resistance in response to changes in the extracellular environment.

PMID: 9512493
Activation of protein kinase B beta and gamma isoforms by insulin in vivo and by 3-phosphoinositide-dependent protein kinase-1 in vitro: comparison with protein kinase B alpha.
Insulin did not induce PKBgamma activity ...   (details)

AKT3 INS

Type:  positive regulation
Is this interaction correct?
Yes
No

Comments

PMID: 9512493

Activation of protein kinase B beta and gamma isoforms by insulin in vivo and by 3-phosphoinositide-dependent protein kinase-1 in vitro: comparison with protein kinase B alpha.
Source

The Biochemical journal (4/1/1998)

Abstract

Activation of protein kinase B beta and gamma isoforms by insulin in vivo and by 3-phosphoinositide-dependent protein kinase-1 in vitro: comparison with protein kinase B alpha. The regulatory and catalytic properties of the three mammalian isoforms of protein kinase B (PKB) have been compared. All three isoforms (PKBalpha, PKBbeta and PKBgamma) were phosphorylated at similar rates and activated to similar extents by 3-phosphoinositide-dependent protein kinase-1 (PDK1). Phosphorylation and activation of each enzyme required the presence of PtdIns (3,4,5) P3 or PtdIns (3,4) P2, as well as PDK1. The activation of PKBbeta and PKBgamma by PDK1 was accompanied by the phosphorylation of the residues equivalent to Thr308 in PKBalpha, namely Thr309 (PKBbeta) and Thr305 (PKBgamma). PKBgamma which had been activated by PDK1 possessed a substrate specificity identical with that of PKBalpha and PKBbeta towards a range of peptides. The activation of PKBgamma and its phosphorylation at Thr305 was triggered by insulin-like growth factor-1 in 293 cells. Stimulation of rat adipocytes or rat hepatocytes with insulin induced the activation of PKBalpha and PKBbeta with similar kinetics. After stimulation of adipocytes, the activity of PKBbeta was twice that of PKBalpha, but in hepatocytes PKBalpha activity was four-fold higher than PKBbeta. Insulin induced the activation of PKBalpha in rat skeletal muscle in vivo, with little activation of PKBbeta. Insulin did not induce PKBgamma activity in adipocytes, hepatocytes or skeletal muscle, but PKBgamma was the major isoform activated by insulin in rat L6 myotubes (a skeletal-muscle cell line).